Using AI & Machine Learning in Spring Boot: Integrating OpenAI API & TensorFlow | by Balian’s techologies and innovation lab | Apr, 2025


Shant Khayalian — Balian’s IT
Shant Khayalian — Balian’s IT

Bob’s building a customer support system that can:

  • Summarize messages
  • Auto-reply using a language model
  • Classify sentiment
  • Generate product descriptions

Instead of building models from scratch, Bob uses:

  • OpenAI API for LLMs (GPT-like magic)
  • TensorFlow Java for local ML inference
[Client]
⬇️
[Spring Boot API]
⬇️⬇️
[OpenAI API] ← LLM tasks (chat, summarization)
[TensorFlow] ← In-house models (sentiment, image tags)

Bob’s API acts as a smart gateway, combining cloud-based AI with local model inference.

Shant Khayalian — Balian’s IT
Shant Khayalian — Balian’s IT
@Configuration
public class OpenAIConfig {
@Bean
public WebClient openAIClient() {
return WebClient.builder()
.baseUrl("https://api.openai.com/v1")
.defaultHeader("Authorization", "Bearer " + System.getenv("OPENAI_API_KEY"))
.build();
}
}
@Service
public class GPTService {
@Autowired
private WebClient openAIClient;

public Mono<String> getChatResponse(String prompt) {
return openAIClient.post()
.uri("/chat/completions")
.bodyValue(Map.of(
"model", "gpt-3.5-turbo",
"messages", List.of(Map.of("role", "user", "content", prompt))
))
.retrieve()
.bodyToMono(String.class);
}
}

Supports:

  • Summarization
  • Text generation
  • Translation
  • Code generation

Recent Articles

Related Stories

Leave A Reply

Please enter your comment!
Please enter your name here