- Ada-DF: An Adaptive Label Distribution Fusion Network For Facial Expression Recognition
Authors: Shu Liu, Yan Xu, Tongming Wan, Xiaoyan Kui
Abstract: Facial expression recognition (FER) plays a significant role in our daily life. However, annotation ambiguity in the datasets could greatly hinder the performance. In this paper, we address FER task via label distribution learning paradigm, and develop a dual-branch Adaptive Distribution Fusion (Ada-DF) framework. One auxiliary branch is constructed to obtain the label distributions of samples. The class distributions of emotions are then computed through the label distributions of each emotion. Finally, those two distributions are adaptively fused according to the attention weights to train the target branch. Extensive experiments are conducted on three real-world datasets, RAF-DB, AffectNet and SFEW, where our Ada-DF shows advantages over the state-of-the-art works.
2. LEAF: Unveiling Two Sides of the Same Coin in Semi-supervised Facial Expression Recognition
Authors: Fan Zhang, Zhi-Qi Cheng, Jian Zhao, Xiaojiang Peng, Xuelong Li
Abstract: Semi-supervised learning has emerged as a promising approach to tackle the challenge of label scarcity in facial expression recognition (FER) task. However, current state-of-the-art methods primarily focus on one side of the coin, i.e., generating high-quality pseudo-labels, while overlooking the other side: enhancing expression-relevant representations. In this paper, we unveil both sides of the coin by proposing a unified framework termed hierarchicaL dEcoupling And Fusing (LEAF) to coordinate expression-relevant representations and pseudo-labels for semi-supervised FER. LEAF introduces a hierarchical expression-aware aggregation strategy that operates at three levels: semantic, instance, and category. (1) At the semantic and instance levels, LEAF decouples representations into expression-agnostic and expression-relevant components, and adaptively fuses them using learnable gating weights. (2) At the category level, LEAF assigns ambiguous pseudo-labels by decoupling predictions into positive and negative parts, and employs a consistency loss to ensure agreement between two augmented views of the same image. Extensive experiments on benchmark datasets demonstrate that by unveiling and harmonizing both sides of the coin, LEAF outperforms state-of-the-art semi-supervised FER methods, effectively leveraging both labeled and unlabeled data. Moreover, the proposed expression-aware aggregation strategy can be seamlessly integrated into existing semi-supervised frameworks, leading to significant performance gains. Our code is available at https://anonymous.4open.science/r/LEAF-BC57/