Text embeddings have revolutionized natural language processing by providing dense vector representations that capture semantic meaning. In the previous tutorial, you learned how...
import numpy as npimport torchfrom transformers import BertTokenizer, BertModel def get_context_vectors(sentence, model, tokenizer):    inputs = tokenizer(sentence, return_tensors="pt", add_special_tokens=True)    input_ids = inputs    attention_mask = inputs     # Get the tokens...