Feeling inspired to write your first TDS post? We’re always open to contributions from new authors.
The constant flow of model releases, new tools, and cutting-edge research can make it difficult to pause for a few minutes and reflect on AI’s big picture. What are the questions that practitioners are trying to answer—or, at least, need to be aware of? What does all the innovation actually mean for the people who work in data science and machine learning, and for the communities and societies that these evolving technologies stand to shape for years to come?
Our lineup of standout articles this week tackle these questions from multiple angles—from the business models supporting (and sometimes generating) the buzz behind AI to the core goals that models can and cannot achieve. Ready for some thought-provoking discussions? Let’s dive in.
- The Economics of Generative AI
“What should we be expecting, and what’s just hype? What’s the difference between the promise of this technology and the practical reality?” Stephanie Kirmer’s latest article takes a direct, uncompromising look at the business case for AI products—a timely exploration, given the increasing pessimism (in some circles, at least) about the industry’s near-future prospects. - The LLM Triangle Principles to Architect Reliable AI Apps
Even if we set aside the economics of AI-powered products, we still need to grapple with the process of actually building them. Almog Baku’s recent articles aim to add structure and clarity into an ecosystem that can often feel chaotic; taking a cue from software developers, his latest contribution focuses on the core product-design principles practitioners should adhere to when building AI apps.
- What Does the Transformer Architecture Tell Us?
Conversations about AI tend to revolve around usefulness, efficiency, and scale. Stephanie Shen’s latest article zooms in on the inner workings of the transformer architecture to open up a very different line of inquiry: the insights we might gain about human cognition and the human brain by better understanding the complex mathematical operations within AI systems. - Why Machine Learning Is Not Made for Causal Estimation
With the arrival of any groundbreaking technology, it’s crucial to understand not just what it can accomplish, but also what it cannot. Quentin Gallea, PhD highlights the importance of this distinction in his primer on predictive and causal inference, where he unpacks the reasons why models have become so good at the former while they still struggle with the latter.